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Abstract

Application of ANN (Artificial neural network) to the electrical properties analysis of PZT is discussed in this paper. The same
set of results of PZT samples were analyzed by a back-propagation (BP) network in comparison with a multiple nonlinear regres-

sion analysis (MNLR) model. The results revealed that the ANN model is much more accurate than MNLR model. The ANN
approach also gave quite encouraging predictions for formulations not included in the train set samples, indicating that the BP
network is a very useful and accurate tool for the properties analysis and prediction of multi-component solid solution piezoelectric
ceramics.
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1. Introduction

Piezoelectric materials find increasing demand in a
wide field of applications such as actuators and trans-
ducers etc. within the last several decades. In order to
satisfy different requirements and to enhance the per-
formance of this kind of materials, addition of different
dopants is an intensively used modification approach.
The ever-increasing need of materials with all-around
excellent performance often makes it necessary to use
multi-component solid solution system. Although the
effects of a variety of doping elements on the electrical
properties of piezoelectric material have been investi-
gated, it is usually difficult to discover ceramic for-
mulation that can satisfy all the serious requirements
and sometimes it is difficult to explain the action of a new
additive, especially in the complicated solid solution sys-
tem. For this purpose, developing a reliable modeling for
the ceramic compounding seems to be very helpful.
Due to its remarkable information processing charac-

teristics such as non-linearity, high parallelism, robust-
ness, fault and failure tolerance, learning, ability to
handle imprecise and fuzzy information, and the cap-
ability to generalize, ANN has been extensively utilized
in solving a diverse areas of science and engineering
problems.1 However, very few is known of the applica-
tion of this technique to the investigation of compli-
cated ceramic materials. In our previous paper, the
correlation between some electrical parameters and
components for BaTiO3 based dielectric materials has
been delineated based on ANN method.2 PZT is one of
the most widely investigated piezoelectric systems. The
goal of this paper concerns with the properties analysis
and prediction of PZT type ceramics. The same set of
experiment data were also used to develop a MNLR
model in order to compare the accuracy of ANN with
the conventional method. Most importantly, several
formulations not included in the train set were also tes-
ted and quite encouraging predictions were obtained.
2. Experimental procedure

2.1. Materials preparation and measurement

There are mainly two types of dopants for PZT, i.e.,
the donor type (soft type) and the acceptor type (hard
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type). Donor doping can provide a higher electro-
mechanical coupling coefficient and piezoelectric coeffi-
cient and a lower mechanical quality factor and
electrical quality factor etc. While the role of the accep-
tor doping is just on the contrary. Thereby in order to
increase the piezoelectric coefficient of PZT two donor
type dopants, Nb2O5 and La2O3, were selected. Another
seldom investigated B site (Zr, Ti) isovalent dopant
CeO2 that can’t belong to both doping types was also
selected. At near the morphotropic phase boundary
(MPB) composition (Zr/Ti�52/48) a series of properties
of PZT can be substantially affected by the Zr/Ti ratio,
thus ZrO2 and TiO2 were also set as variables and the
contents of the two components were set near the MPB
boundary. To maintain a stoichiometrically total amount
of PbZrO3 and PbTiO3, the upper limit and lower limit of
ZrO2 and TiO2 were set contrarily. Besides, firing tem-
perature was also considered as a variable of the for-
mulation. The addition levels of each additives and the
temperature range are listed in Table 1, where the max-
imum content of La2O3, Nb2O5 and CeO2 are about 3
mol%, 2 mol% and 2.5 mol% respectively.
21 formulations derived from homogenous experi-

mental design tables were used as the training data set
for knowledge acquisition.3 In each formulation 1.5%
excess Pb3O4 was used in case of the Pb loss during fir-
ing of the powders, and the Pb3O4 content was fixed as
20.3 g. Pb3O4, ZrO2, TiO2, Nb2O5, La2O3 and CeO2
were weighed, mixed in ethanol and thoroughly ball-
milled for 24 h. After drying the mixture was fired, then
the synthesized powder was pressed into disks with a
diameter of about 15 mm and a thickness of about 1
mm. After being sintered at 1260 �C for 3 h the ceramic
disks were paved with Ag-electrode and polarized in a
silicon oil bath by applying an electric field of 3 kV/mm
at 120 �C for 30 min. Piezoelectric coefficient d33 of the
samples were determined by using a ZJ-3A piezometer.
Electromechanical coupling coefficient Kp and dielectric
loss tangent tgd were measured by a HP4194A impe-
dance analyzer. Remnant polarization Pr of the samples
were measured by using a RT6000HVS ferroelectric test
system (Radiant Technology Incorporation, USA). The
ultimate results are listed in Table 2.

2.2. ANN modeling of the PZT system

The ANN employed here is a BP network consisting of
three layers. The first layer is the input layer with nodes
representing input variables to the problem (e.g. dopant
content or temperature). The last layer is the output
layer with nodes representing the dependent variables (e.g.
d33 calculated). Between them is a hidden layer containing
nodes to help capture the non-linearity of the data. Both
input and hidden layers have an additional bias neuron.
Different layers are connected by weights. Because Pb3O4
content is fixed, the ANN model is composed of six neu-
rons in the input layer and four neurons in the output
layer. After several trials of different numbers of hidden
neurons, eight neurons were selected in the hidden layer.
Therefore the structure of the ANN model for the PZT
formulation can be shown as Fig. 1. The results shown
in Table 2 were used as the training data set for the
ANN model. Because a value near 0 or 1 will lead to the
‘‘inaction’’ of the network, the input data (all in g) and
the output data in Table 2 were normalized to give
values between around 0.05 and 0.95 prior to training.2

The ANN is built by repeatedly adjusting weights until
the overall error between calculated and target outputs
is approaching to the preset error criteria. The detailed
steps of the BP algorithm performed in the network was
reported elsewhere.2 Some parameters of the ANN model
are listed in Table 3. Within the neural network the learn-
ing rate �, the momentum � and the convergence error are
all empirical values. A high � will accelerate training by
changing the weight significantly from one cycle to
another. However, this may cause the search to oscillate
on the error surface and never converge, thus increasing
the risk of overshooting a near-optimal weight.Whereas a
small � drives the search steadily, though slowly. A high �
will reduce the risk of the network being stuck in local
minima, but it increases the risk of overshooting the solu-
tion as does a high �. Too small a convergence error will
result in overfitting of the model.
3. Results and discussion

3.1. Prediction capability of the ANN model

The finished ANN model is delineated by the con-
nection weights between the input and hidden layers
and the connection weights between the hidden and
output layers, which are listed in Tables 4 and 5 respec-
tively. In order to compare the accuracy between ANN
method and MNLR method, the same data in Table 2
were also used to develop MNLR model for correlations
between the properties and the formulations. As an
example, the model of d33 can be expressed in Eq. (1).
Table 1

Dopants addition levels and firing temperature range (Pb3O4 is a constant of 20.3 g)
Dopant
 ZrO2 (g)
 TiO2 (g)
 Nb2O5 (g)
 La2O3 (g)
 CeO2 (g)
 Temp. (�C)
Lower limit
 5.36
 3.52
 0
 0
 0
 800
Upper limit
 5.84
 3.2
 0.36
 0.32
 0.2
 1000
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d33 ¼ 16996:20þ 200:95� ZrO2 � 6803:79� TiO2

þ 40224:69�Nb2O5 þ 3935:94� La2O3

þ 76125:29� CeO2 þ 0:90� Temp � 11007:65

�Nb2O5 � La2O3 þ 1486:82�Nb2O5 � CeO2

� 20292:84� La2O3 � CeO2 � 31:17�Nb2O5

� Temp � 0:20� La2O3 � Temp � 60:26

� CeO2 � Temp

where the additives are all expressed in g and three
reciprocal effects of the three dopants, i.e.
Nb2O5�La2O3, Nb2O5�CeO2 and La2O3�CeO2, and
three reciprocal effects between each dopant and tem-
perature were considered.
The prediction abilities of d33 values of 21 samples of
both models are intuitively illustrated in Fig. 2, where
the two coordinates of a point represent observed and
calculated d33 values of a sample respectively. We can
see that ANN model gives much better predictions than
MNLR model. Because the accuracy of the ANN model
can be increased by decreasing the convergence error,
ANN model can be built more accurate than MNLR
Table 2

Experimental results of 21 PZT samples
Sample
PZT-1
 PZT-2
 PZT-3
 PZT-4
 PZT-5
 PZT-6
 PZT-6
d33 (pC/N)
 342
 302
 297
 270
 182
 339
 399
tgd
 0.0169
 0.0189
 0.02
 0.0169
 0.0349
 0.0167
 0.0202
Kp
 0.573
 0.541
 0.516
 0.346
 0.330
 0.587
 0.626
Pr (mC/cm2)
 18.8
 14.1
 6.3
 22.2
 32.7
 33.2
 24.6
PZT-8
 PZT-9
 PZT-10
 PZT-11
 PZT-12
 PZT-13
 PZT-14
d33 (pC/N)
 298
 296
 284
 372
 398
 345
 363
tgd
 0.0192
 0.0182
 0.0217
 0.0468
 0.0194
 0.0255
 0.0208
Kp
 0.542
 0.496
 0.493
 0.544
 0.643
 0.540
 0.601
Pr (mC/cm2)
 22.9
 21.7
 15.1
 14.7
 39.1
 23
 41.9
PZT-15
 PZT-16
 PZT-17
 PZT-18
 PZT-19
 PZT-20
 PZT-21
d33 (pC/N)
 315
 389
 358
 401
 352
 329
 286
tgd
 0.0258
 0.0271
 0.0253
 0.0217
 0.0455
 0.0187
 0.0292
Kp
 0.494
 0.644
 0.587
 0.641
 0.578
 0.563
 0.481
Pr (mC/cm2)
 21
 38.3
 26.8
 30
 28.9
 30.6
 20.8
Table 3

Critical parameters of the PZT BP network
Neuron function
 Learning rate �
 Momentum factor �
 Range of initial weights
 Maximum iterations
 Convergence error
Sigmoid function
 0.15
 0.95
 �0.3�0.3
 5000
 0.01
Fig. 1. Schematic view of the BP network for PZT formulation model.
Table 4

Connection weights between the input and hidden layers
ZrO2
 TiO2
 Nb2O5
 La2O3
 CeO2
 Temp.
 Input bias
h1
 �3.693
 �2.236
 3.890
 1.511
 �2.704
 3.140
 �2.237
h2
 �4.492
 2.544
 �1.066
 �1.502
 2.698
 �0.776
 �5.011
h3
 �1.442
 �4.398
 �1.582
 0.566
 0.357
 3.687
 3.637
h4
 4.202
 �4.332
 2.001
 �0.191
 �3.640
 4.096
 �0.845
h5
 1.259
 0.540
 �0.368
 �1.342
 0.481
 0.544
 �2.867
h6
 6.233
 1.385
 �0.606
 �3.784
 �0.298
 �2.031
 �1.570
h7
 5.619
 �0.040
 �0.703
 �4.099
 0.018
 �1.066
 2.642
h8
 0.489
 2.226
 1.942
 �1.141
 �0.047
 �0.459
 �2.060
h9
 2.923
 �0.221
 �5.009
 1.095
 5.174
 0.131
 �7.168
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model in predicting the original training formulations.
However, too small a convergence error will result in
overfitting of the model.4 As a result, prediction errors
for formulations not included in the training set might
increase drastically. Therefore for a more convincingly
inspection of the accuracy of the ANN model, six new
formulations with all ingredients within the original
addition levels were but different from the training
samples also tested. Fig. 3 indicates that the predicted
values are in good accordance with observed values for
d33. Prediction capability of ANN for four parameters
of the new set of samples characterized through the root
mean-square (RMS) error and the correlation coeffi-
cient are also listed in Table 6. Predictions of Kp and Pr
are less accurate than d33 and tgd, which may be ascri-
bed to the bigger measurement errors of Kp and Pr. Kp
is calculated via the resonant and anti-resonant fre-
quencies method while Pr can be influenced by defects in
the sample or on the electrode. These are further evi-
dences for the validity of the ANN model.
Fig. 2. Correlations between calculated and observed d33 of 21

samples by both ANN and MNLR model.
Fig. 3. Correlations between calculated and observed d33 for six

formulations not included in the training data set.
Table 5

Connection weights between the hidden and output layers
h1
 h2
 h3
 h4
 h5
 h6
 h7
 h8
 h9
 Hidden bias
d33
 �0.724
 1.342
 �1.463
 3.704
 �2.269
 4.478
 �2.019
 �3.883
 �1.166
 1.311
tgd
 2.778
 �1.412
 �4.657
 1.063
 �7.403
 �0.260
 1.368
 �1.224
 6.146
 �0.741
Kp
 �2.585
 �1.447
 4.662
 0.613
 2.866
 2.977
 �2.030
 �0.441
 �2.979
 �0.415
Pr
 5.409
 0.332
 �9.075
 1.283
 5.513
 0.620
 2.258
 �6.942
 1.714
 2.535
Fig. 4. Graphical analysis of the correlation between d33 and CeO2.
Fig. 5. Graphical analysis of the correlation between Pr and CeO2.
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3.2. Correlation analysis between performance and
CeO2

By using the registered ANN model, the correlation
between the properties and the input variables can be
conveniently derived. Influence of CeO2 content on the
d33 values of the PZT samples calculated by the ANN
model is shown in Fig. 4. We can see that with the
increase of CeO2 d33 keeps almost constant initially,
then it exhibits a sharp decrease. Variation of remnant
polarization Pr with CeO2 content shown in Fig. 5
exhibits similar shape. Similar phenomenon has been
reported by Garg that d33 decrease with CeO2 when
CeO2 exceeds 0.1 mol% in the material.5 They ascribed
this to the substitution of reduced Ce3+ for the B sites
or immigration of Ce to the grain boundary, and the
variation of the MPB boundary when the amount of
CeO2 increases. Based on our results, the sharp decrease
of d33 and Pr might be mainly due to the variation of the
MPB boundary, because near this boundary the prop-
erties of PZT can be substantially affected.
4. Conclusion

The results indicate that ANN modeling can provide
highly accurate correlation with reasonable good pre-
diction power. In combination with our previous
results of applying ANN to the analysis of BaTiO3
ceramics, it may be concluded that the highly non-lin-
earity characteristic and the capability to generalize of
ANN make it a very suitable tool for modeling and
analysis of complex ceramic solid solution materials.
The results also suggest that excess amount of CeO2
may cause the deterioration of the piezoelectricity of the
PZT.
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